Novel architecture of plasmon excitation based on self-assembled nanoparticle arrays for photovoltaics.

نویسندگان

  • Hanggochnuri Jo
  • Ahrum Sohn
  • Kyung-Sik Shin
  • Brijesh Kumar
  • Jae Hyun Kim
  • Dong-Wook Kim
  • Sang-Woo Kim
چکیده

An efficient approach to producing hexagonally self-assembled and well-dispersed gold (Au) nanoparticles (NPs) in the pores of porous anodic aluminum oxide (AAO) is reported. This approach is particularly useful for tuning the surface plasmon resonance frequency of Au NPs by varying the effective dielectric constant of AAO. A strongly enhanced Raman spectrum of dye molecule rhodamine 6G using these well-dispersed Au NPs revealed that such a self-assembled Au NP array can induce a strong plasmonic field. Furthermore, we demonstrated a new architecture of plasmon excitation in a bulk heterojunction (BHJ) inverted organic solar cell (IOSC) using the Au NP array with AAO. The optical response of an active layer poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric acid methyl ester was enhanced by this strong plasmonic field associated a well-dispersed Au NP array. A comparative study of AAO with and without Au NPs confirmed plasmonic improvement of the BHJ IOSC. Simulation results showed that Au NPs concentrate the incoming light into a strongly localized field and enhance light absorption in a wide wavelength range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanosphere Lithography: Synthesis and Application of Nanoparticles with Inherently Anisotropic Structures and Surface Chemistry

Early work with size-tunable periodic particle arrays (PPAs) fabricated by nanosphere lithography (NSL) demonstrated that the localized surface plasmon resonance (LSPR) could be tuned throughout the visible region of the spectrum. The LSPR is sensitive to changes in nanoparticle aspect ratio and local dielectric environment. This property has recently been exploited to develop a novel method of...

متن کامل

Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles

Surface plasmon resonances in metallic nanoparticles are of interest for a variety of applications due to the large electromagnetic field enhancement that occurs in the vicinity of the metal surface, and the dependence of the resonance wavelength on the nanoparticle’s size, shape, and local dielectric environment. Here we report an engineered enhancement of optical absorption and photocurrent i...

متن کامل

Formation of plasmonic nano- particle arrays – rules and recipes for an ordered growth

We review a self-assembled growth method for plasmonic nanoparticle arrays, based on glancing angle deposition. We produced ordered Ag, Au, and Cu nanoparticle arrays over large areas on different stepped oxide templates. Precise control over the final geometry can be difficult and we provide recipes to obtain macroscopically ordered structures. We discuss the influence of the adsorbate diffusi...

متن کامل

Construction of simple gold nanoparticle aggregates with controlled plasmon–plasmon interactions

We have developed a colloidal assembly for the study of plasmon–plasmon interactions between gold nanoparticles. Colloidal aggregates of controlled size and interparticle spacing were synthesized on silica nanoparticle substrates. Following the immobilization of isolated gold nanoparticles onto silica nanoparticles, the surfaces of the adsorbed gold nanoparticles were functionalized with 4-amin...

متن کامل

Hierarchically Organized Nanoparticle Mesostructure Arrays Formed through Hydrothermal Self-Assembly

We report a new self-assembly pathway that leads to supported and hierarchically organized gold nanoparticle mesostructure arrays on solid substrates such as glass slide, thermal oxide, photopolymer film, and mica. Using the nanoparticle micelle as a building block, hierarchical gold nanoparticle mesostructure arrays were prepared by a hydrothermal nucleation and growth process through self-ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2014